
G2P and P2G
David R. Mortensen
March 21, 2024

Introduction

In this lecture, we will talk about G2P (and a little about its inverse, P2G).

Uses of G2P

G2P used to be more important than it is now. It was an essential part of
ASR and TTS systems prior to the end-to-end revolution. Now, G2P is used
less consistently in speech, but in a wider diversity of applications. Some
examples:

• Low-resource TTS

• Producing IPA transcriptions of recordings of low-resource languages
(where recordings are available) so that they can be aligned with the
recordings and these can be used, together, to do corpus phonetic research

• As a preprocessing step for NLP tasks that benefit from phonemic repre-
sentations (like NER, Entity Linking, QA, NLI, etc.)

• Preprocessing for most computational linguistics tasks involving phonol-
ogy where the input data is in orthography

Uses of P2G

The uses of P2G are more constrained. However, sometimes it is desirable
to convert graphemes to phonemes, to apply some processing, and then to
convert the phonemes back into graphemes.

Challenges of G2P

There are three significant challenges in G2P:

1. Data is scarce and can be expensive to produce

2. When it does exist, it is usually in the form of transcriptions out of context,
rather than running text

3. The grapheme to phoneme mapping is non-deterministic in many lan-
guages

G2P AND P2G 2

WikiPron

One source of pronunciation data is Wiktionary. A tool has been developed
for scraping word-transcription pairs from Wiktionary for many languages.
It is called WikiPron.1 Using WikiPron, it is possible to obtain orthography- 1 Jackson L. Lee, Lucas F.E. Ashby, M. Eliz-

abeth Garza, Yeonju Lee-Sikka, Sean Miller,
Alan Wong, Arya D. McCarthy, and Kyle
Gorman. Massively multilingual pronuncia-
tion modeling with WikiPron. In Nicoletta
Calzolari, Frédéric Béchet, Philippe Blache,
Khalid Choukri, Christopher Cieri, Thierry
Declerck, Sara Goggi, Hitoshi Isahara, Bente
Maegaard, Joseph Mariani, Hélène Mazo,
Asuncion Moreno, Jan Odijk, and Stelios
Piperidis, editors, Proceedings of the Twelfth
Language Resources and Evaluation Confer-
ence, pages 4223–4228, Marseille, France,
May 2020. European Language Resources
Association. ISBN 979-10-95546-34-4. URL
https://aclanthology.org/2020.
lrec-1.521

IPA pairs for a large number of languages, although the quality varies and the
number of pairs for a particular language is sometimes small.

Rule-based G2P

Here, we will concentrate on multilingual G2P systems since that is the pri-
mary area in which rule-based G2P systems are still used.

Unitran

An early massively multilingual G2P system was called Unitran (ScriptTran-
scriber). It reflected a mammoth effort of slogging through the entire Unicode
standard and providing an IPA equivalent for each grapheme. The Latin al-
phabet was excluded as too ambiguous.2 The goal of this tool was not G2P, 2 Ting Qian, Kristy Hollingshead, Su-youn

Yoon, Kyoung-young Kim, and Richard
Sproat. A python toolkit for universal
transliteration. In Nicoletta Calzolari,
Khalid Choukri, Bente Maegaard, Joseph
Mariani, Jan Odijk, Stelios Piperidis,
Mike Rosner, and Daniel Tapias, editors,
Proceedings of the Seventh International
Conference on Language Resources and
Evaluation (LREC’10), Valletta, Malta,
May 2010. European Language Resources
Association (ELRA). URL http://
www.lrec-conf.org/proceedings/
lrec2010/pdf/30_Paper.pdf

per se, but transliteration and it was based on very naive views of how or-
thographies function. However, it was a major step forward toward massively
multilingual G2P.

Epitran

To address weakeness in UniTran, Epitran was developed.
3 is a widely-used G2P system with support for many languages. The

3 David R. Mortensen, Siddharth Dalmia,
and Patrick Littell. Epitran: Precision
G2P for many languages. In Nicoletta
Calzolari, Khalid Choukri, Christopher
Cieri, Thierry Declerck, Sara Goggi, Koiti
Hasida, Hitoshi Isahara, Bente Maegaard,
Joseph Mariani, Hélène Mazo, Asuncion
Moreno, Jan Odijk, Stelios Piperidis, and
Takenobu Tokunaga, editors, Proceedings
of the Eleventh International Conference on
Language Resources and Evaluation (LREC
2018), Miyazaki, Japan, May 2018. European
Language Resources Association (ELRA).
URL https://aclanthology.org/
L18-1429

current version is written in Python and is distributed as a Python package.
Support for English is provided through an external program, lex_lookup
that implements a WFST-based paired-ngram model. Support Mandarin
Chinese and Japanese is provided via pronouncing dictionaries. The other
languages are supported through a consistent rule-based architecture.

Conversion from a string of graphemes to a string of IPA phonemes is
performed via a three-part pipeline:

preprocessor A cascade of regular expression substitutions (written as string-
rewrite rules) that transform the input into a form that can be mapped into
IPA.

map A table of string-to-string mappings that is applied to the post-processed
string greedily from left to right.

postprocessor Another cascade of regular expression substitutions that trans-
form the IPA string resulting from mapping to the actual pronunciation.
This often implements phonological rules that are not reflected in the or-
thography. For example, the fact that German ⟨n⟩ is realized as /ŋ/ before
/k/ does not appear in the writing system, but does appear in speech.

https://aclanthology.org/2020.lrec-1.521
https://aclanthology.org/2020.lrec-1.521
http://www.lrec-conf.org/proceedings/lrec2010/pdf/30_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/30_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/30_Paper.pdf
https://aclanthology.org/L18-1429
https://aclanthology.org/L18-1429

g2p and p2g 3

The pipeline is illustrated with a German example (Stecker ‘receptacle’) in
Figure 1. In preprocessing, ⟨s⟩ is converted to ⟨sch⟩ before ⟨t⟩ so that, when

Input
Stecker

Preprocesor
schtecker

Map
ʃtɛkəʀ

Postprocessor
ʃtɛkɐ

Output
ʃtɛkɐ

Figure 1: The structure of an Epitran
language modulemapping applies, this phoneme (like all other occurrences of ⟨sch⟩) can

be mapped to /ʃ/. The map does most of the work, converting each of the
characters/substrings to their IPA equivalents. Due to a phonological rule,
the sequence /əʀ/ is converted to /ɐ/ (in Standard German but not in many
varieties). We have decided to handle this with a postprocessor rule.

How are these rules coded? The first rule, ⟨s⟩ → ⟨sch⟩ / _ t, is written as
follows:

% Retraction of initial <s> before plosives
s -> sch / # _ (p|t)

Lines that begin with % are comments. What this rule means is that ⟨s⟩ is
rewritten as ⟨sch⟩ in environment where it is after a word boundary (indi-
cated with #) and before ⟨p⟩ or ⟨t⟩, written as a regex disjunction. Note that
this could have also been written as:

s -> sch / # _ [pt]

since the parts of rules follow the Python regular expression syntax. These
rules are placed in a single file and apply in order.

The mapping table is very simple: it is simply a comma-separated value file
consisting of grapheme-phoneme pairs:

b,b
bb,b
c,k
ch,x
chs,ks
ck,kC
d,d
dd,dC
dsch,d͡ʒ
dt,tC
f,f
ff,fC
g,ɡ
gg,kC
ig,iç
h,h

G2P AND P2G 4

j,j
...

Note, though, that it is possible to use non-IPA symbols in the output. Here,
a generic C is used to stand in for a consonant, which will be used to trigger
one or more rules in the postprocessor.

In our discussion of the preprocessor, we left out one important feature:
it is possible to define variables that stand in for regular expressions. For
example, we might define a variable for consonants:

::consonant::␣=␣b|k|x|d|d͡ʒ|t|f|ɡ|ç|j|l|m|n|ŋ|p|p͡f|v|ʀ|s|ʃ|s|t͡ʃ|t͡s|C

Note the the variable names must be enclosed in two pairs of colons. It is then
possible to use the variable in rules:

i -> ɪ / _(::consonant::)(::consonant::)
y -> ʏ / _(::consonant::)(::consonant::)
e -> ɛ / _(::consonant::)(::consonant::)
ø -> œ / _(::consonant::)(::consonant::)
ɑ -> a / _(::consonant::)(::consonant::)
o -> ɔ / _(::consonant::)(::consonant::)
u -> ʊ / _(::consonant::)(::consonant::)

(Note that these rules are not quite right, but are provided for illustrative
purposes). We are particularly concerned, though, with the rule that converts
schwa + /ʀ/ to /ɐ/ at the end of a word. It is, simply:

əʀ -> ɐ / _ #

Why was Epitran designed so that each language module had these three
components (preprocessor, map, postprocessor)? In principle, all three
functions could be performed by a single cascade of rewrite rules (or, for
that matter, by a single composed series of finite-state transducers). The goal,
in this case, was to make development easy. For the majority of languages,
only the map is necessary and it is easy to create and edit in a spreadsheet
(or using the CSV modes in modern text editors) if it is in CSV format. It is
also easy to understand and reason about. The general cases can be handled
with the map; the specific cases can be handled either by transforming the
orthography using the preprocessor or transforming the phonemes using the
postprocessor.

Epitran is currently Python-only (except for lex_lookup, which is writ-
ten in C). Epitran 2, under development, will be written in Rust using WFSTs
under the hood (which will make the library faster, will allow for improved
handling of exceptional words, and will allow all G2P modules to be inverted
into P2G modules). It will also make it easy combine the current rule-based
approach with a data-driven approach.

G2P AND P2G 5

Data-driven G2P

Epitran and similar rule-based models perform very well when the grapheme-
to-phoneme relationship is deterministic. In fact, it is not possible for a data-
driven G2P system to outperform a correct rule-based G2P. However, as we
have seen the grapheme to phoneme relationship is often not deterministic.
For these purposes, G2P models based on machine learning are needed.
These may be neural or non-neural.

Paired-ngram G2P

Early, very successful, G2P models were based on WFSTs (which we used
to implement HMMs). The insight, here, is that there is a correspondence
between ngrams of graphemes and ngrams of phonemes. For example, ⟨gh⟩ is
pronounced three different ways:

• ghost, ghetto

• enough, tough, slough, laugh, trough, rough, cough

• knight, right, fright, night, tight, height, bight, eight, caught, taught, daugh-
ter

This seems complicated, but usually when you see, ⟨ough⟩, there is a corre-
sponding /ʌf/ (or sometimes /ɑf/) in the phonemic transcription. Except in
⟨eight⟩, ⟨ight⟩ always corresponds to /ɑɪt/. A paired-ngram G2P is trained on
a pronouncing dictionary and learns these associations. The process of doing
G2P is that of decoding an HMM where the observations are graphemes and
the hidden states correspond to phonemes.

LSTM-based systems

In performance, paired-ngram G2P is generally worse that that of LSTM-
based systems (although the LSTM-based models are potentially harder to
train and more computationally expensive to use). These models typically use
a simple encoder-decoder architecture, or encoder-decoder with some type
of attention (hard attention, sparse attention, etc.). Like paired-ngram G2P
models, they are typically trained on pronouncing dictionary data (though
there is no theoretical reason that they could not be trained on running text,
apart from the fact that phonemic transcriptions of running data are scarce).

Transformer-based systems

Transformer-based G2P models perform better than LSTM-based models
when data is plentiful. They typically use small transformers (few encoders
and decoders). They are computationally much more expensive than LSTMs
or WFST-based models but the performance advantage may make them
worthwhile.

G2P AND P2G 6

References

Jackson L. Lee, Lucas F.E. Ashby, M. Elizabeth Garza, Yeonju Lee-Sikka,
Sean Miller, Alan Wong, Arya D. McCarthy, and Kyle Gorman. Mas-
sively multilingual pronunciation modeling with WikiPron. In Nicoletta
Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri, Christopher
Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard,
Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk, and Ste-
lios Piperidis, editors, Proceedings of the Twelfth Language Resources and
Evaluation Conference, pages 4223–4228, Marseille, France, May 2020. Eu-
ropean Language Resources Association. ISBN 979-10-95546-34-4. URL
https://aclanthology.org/2020.lrec-1.521.

David R. Mortensen, Siddharth Dalmia, and Patrick Littell. Epitran: Pre-
cision G2P for many languages. In Nicoletta Calzolari, Khalid Choukri,
Christopher Cieri, Thierry Declerck, Sara Goggi, Koiti Hasida, Hi-
toshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Asun-
cion Moreno, Jan Odijk, Stelios Piperidis, and Takenobu Tokunaga,
editors, Proceedings of the Eleventh International Conference on Lan-
guage Resources and Evaluation (LREC 2018), Miyazaki, Japan, May
2018. European Language Resources Association (ELRA). URL
https://aclanthology.org/L18-1429.

Ting Qian, Kristy Hollingshead, Su-youn Yoon, Kyoung-young Kim, and
Richard Sproat. A python toolkit for universal transliteration. In Nico-
letta Calzolari, Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan
Odijk, Stelios Piperidis, Mike Rosner, and Daniel Tapias, editors, Pro-
ceedings of the Seventh International Conference on Language Resources
and Evaluation (LREC’10), Valletta, Malta, May 2010. European Language
Resources Association (ELRA). URL http://www.lrec-conf.org/
proceedings/lrec2010/pdf/30_Paper.pdf.

https://aclanthology.org/2020.lrec-1.521
https://aclanthology.org/L18-1429
http://www.lrec-conf.org/proceedings/lrec2010/pdf/30_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/30_Paper.pdf

	Introduction
	Rule-based G2P
	Data-driven G2P

