
Computational Approaches to Morphological Segmen-
tation and Tokenization
David R. Mortensen
January 24, 2024

Introduction

In this lecture, we will look at five different algorithms for subword segmenta-
tion:

1. Byte-pair encoding
2. Wordpiece
3. Unigram tokenization

4. Sentencepiece
5. Morfessor

The first four are not primarily intended for morpheme segmentation
(although this behavior should be a side effect, to some degree). The fifth is
explicitly intended for morphological segmentation (but is very computation-
ally intensive).

Tokenization Algorithms

The following algorithms have been used widely in practical NLP systems.
The first two (BPE and Wordpiece) are very efficient to train and encoding
and decoding are also efficient, so they are attractive for use with a large quan-
tity of data. However, it is clear that neither of these algorithms approaches
the theoretical limit in terms of tokenizing text into meaningful units.

In some respects, Unigram and Sentencepiece seem more promising
on the theoretical front, though they are also less efficient than BPE and
Wordpiece.

Byte-pair encoding

In byte-pair encoding1, the model is initialized with character-level or byte 1 Rico Sennrich, Barry Haddow, and Alexan-
dra Birch. Neural machine translation
of rare words with subword units. In
Proceedings of the 54th Annual Meeting
of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages
1715–1725, Berlin, Germany, August 2016.
Association for Computational Linguis-
tics. DOI: 10.18653/v1/P16-1162. URL
https://aclanthology.org/P16-1162

level representations (in training). Subsequent pairs of bytes are then replaced
with an as-yet unused symbol until a certain vocabulary size is reached. At
each step, the byte-pair or character pair that is replaced by another token is
the type for which there are the most tokens.

Take the following example. Start with a training corpus that contains five
instances of big, three instances of bigger, one instance of biggest, and one
instance of Everest. We can represent this as follows:

corpus = {"b i g </w>": 5,
"b i g g e r </w>": 3,
"b i g g e s t </w>": 1,
"E v e r e s t </w>": 1}

https://aclanthology.org/P16-1162

COMPUTATIONAL APPROACHES TO MORPHOLOGICAL SEGMENTATION AND TOKENIZ ATION 2

The </w> is used to mark the ends of words and to distinguish character
sequences that occur there from those that occur elsewhere. The two most
common symbol pairs that occur in the corpus are b i (9) and i g (9). Be-
cause we saw bi first, we will target it for replacement. We will replace all
sequences of b and i with a new symbols, bi. This yields:

corpus = {"bi g </w>": 5,
"bi g g e r </w>": 3,
"bi g g e s t </w>": 1,
"E v e r e s t </w>": 1}

We will add a rule to our grammar (which, plus the set of atomic symbols,
defines our vocabulary):

bi → b i

The most frequent pair is now bi g, which we will replace with big

corpus = {"big </w>": 5,
"big g e r </w>": 3,
"big g e s t </w>": 1,
"E v e r e s t </w>": 1}

We will push another rule to our grammar stack:

big → bi g
bi → b i

We again have a tie for most frequent pair (big g and ge). We’ll target big g
since we saw it first. We’ll replace it with bigg:

corpus = {"big </w>": 5,
"bigg e r </w>": 3,
"bigg e s t </w>": 1,
"E v e r e s t </w>": 1}

The grammar is now:

bigg → big g
big → bi g
bi → b i

Following the same logic

corpus = {"big </w>": 5,
"bigge r </w>": 3,
"bigge s t </w>": 1,
"E v e r e s t </w>": 1}

The grammar is now:

COMPUTATIONAL APPROACHES TO MORPHOLOGICAL SEGMENTATION AND TOKENIZ ATION 3

bigge → bigg e
bigg → big g
big → bi g
bi → b i

Then:

corpus = {"big </w>": 5,
"bigger </w>": 3,
"bigge s t </w>": 1,
"E v e r e s t </w>": 1}

Yielding the grammar:

bigger → bigge r
bigge → bigg e
bigg → big g
big → bi g
bi → b i

Then:

corpus = {"big </w>": 5,
"bigger</w>": 3,
"bigge s t </w>": 1,
"E v e r e s t </w>": 1}

Yielding the grammar:

bigger</w> → bigger </w>
bigger → bigge r
bigge → bigg e
bigg → big g
big → bi g
bi → b i

Then:

corpus = {"big </w>": 5,
"bigger</w>": 3,
"bigge st </w>": 1,
"E v e r e st </w>": 1}

Yielding the grammar:

st → s t
bigger</w> → bigger </w>
bigger → bigge r
bigge → bigg e
bigg → big g
big → bi g
bi → b i

COMPUTATIONAL APPROACHES TO MORPHOLOGICAL SEGMENTATION AND TOKENIZ ATION 4

Then:

corpus = {"big </w>": 5,
"bigger</w>": 3,
"bigge st</w>": 1,
"E v e r e st</w>": 1}

Yielding the grammar:

st</w> → st </w>
st → s t
bigger</w> → bigger </w>
bigger → bigge r
bigge → bigg e
bigg → big g
big → bi g
bi → b i

And so on.
If this continues indefinitely, eventually there will be a token correspond-

ing to each word type, which would defeat the purpose of subword tokeniza-
tion. Instead, the vocabulary size is limited and the iterations stop when the
vocabulary size is reached. In our toy example, we might say that the vocab-
ulary size is set at 128 (the number of possible bytes) plus 8 (non-terminal
symbols) In that case, our loop would terminate after st</w> was added to A non-terminal symbol, in formal language

theory, is one that sits on the left-hand side
of a production rule.

the vocabulary.

(1) A few observations:
a. The larger the vocabulary, the fewer tokens per word.
b. Common morphemes will tend to coalesce first.
c. Uncommon words will not coalesce unless the vocabulary is very

large.
d. Subword token boundaries are not guaranteed to align with

morpheme boundaries.

Decoding byte-pair encoded text is easy: apply each rule in the grammar,
in succession, until the end of the grammar is reached. Encoding BPE text is
similar. Start at the end of the grammar. For each pair on the right-hand side,
parse it into the symbol on the left-hand side until the grammar is exhausted.

Wordpiece

At a deep level, the Wordpiece algorithm used in BERT and other Google
products is rather similar to BPE. The major difference is that, rather than
basing the target pair for replacement, at each step in the algorithm, upon
relative frequency, it is based on pointwise mutual information:

PMI(a, b) = p(a, b)
p(a)p(b)

(1)

COMPUTATIONAL APPROACHES TO MORPHOLOGICAL SEGMENTATION AND TOKENIZ ATION 5

This places the results on slightly firmer information-theoretic ground than
is the case for BPE. It means that the pairs that are fused are not simply those
that are most frequent (which could result accidentally from a and b being,
independently, very frequent) but because they are more frequent as a pair
than would be expected from their frequencies generally.

There is another notational difference: in Wordpiece, non-initial tokens2 2 Tokens that do not occur at the beginning
of a wordare typically denoted by two hash marks. For example, prior to fusion, big

might be represented as:

("b", "##i", "##g")

This makes it easy to decode Wordpiece representations.

Unigram Tokenization

BPE and Wordpiece start with small vocabularies and build them up itera-
tively; Unigram tokenization starts with a very large vocabulary, then win-
nows it down by eliminating items that increase the loss on a (character-level)
unigram language modeling task.3 Unigram tokenization is founded on infor-

3 Taku Kudo. Subword regularization:
Improving neural network translation
models with multiple subword candidates.
In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics
(Volume 1: Long Papers), pages 66–75,
Melbourne, Australia, July 2018. Association
for Computational Linguistics. DOI:
10.18653/v1/P18-1007. URL https:
//aclanthology.org/P18-1007

mation theory: finding the optimal code length.
Let us start with an example and some definitions. Consider the word

hat with the characters h, a, and t. We can tokenize it into character-length
tokens (and compute the unigram probabilities) as follows:

The numbers are made up, but the algorithm
is real.

P(["h", "a", "t"]) = P("h")× P("a")× P("t") (2)

=
5

210 ×
36
210 ×

20
210 (3)

= 0.000389 (4)

We can also tokenize hat into other units in our vocabulary:

P(["ha", "t"]) = P("ha")× P("t") (5)

=
6

210 ×
20
210 (6)

= 0.0022676 (7)

The unigram probability of a sequence is the product of the probabilities of
each of the items in that sequence.

P(x) =
M∏
i=1

p(xi), ∀i xi ∈ V ,
∑
x∈V

p(x) = 1 (8)

In (2) and (5) we see two different probabilities for different tokenizations
of the same string. We see, as shown in (5), that a longer token sometimes
results results in a higher probability than two shorter tokens (when the
longer token is a sequence that is very frequent in the corpus). The reason
for this is probably obvious: all of the probabilities are going to be less than
one, so—other things being equal—longer sequences are going to have lower

https://aclanthology.org/P18-1007
https://aclanthology.org/P18-1007

COMPUTATIONAL APPROACHES TO MORPHOLOGICAL SEGMENTATION AND TOKENIZ ATION 6

probabilities than shorter sequences. However, this is only true if the longer
token is not very rare.

Finding the optimal segmentation, under a Unigram tokenization model,
is given by

x∗ = argmax
x∈S(X)

P(x), (9)

where S(X) is the set of segmentation candidates built from the input se-
quence X. Of course, computing this by brute force would be very expensive,
so this is obtained using the Viterbi algorithm.4 4 Andrew Viterbi. Error bounds for convolu-

tional codes and an asymptotically optimum
decoding algorithm. IEEE transactions on
Information Theory, 13(2):260–269, 1967

If V is known, it is possible to estimate the subword occurrence probabili-
ties p(xi) using a version of the EM algorithm. In this case, the EM algorithm
maximizes the following marginal likelihood L, under the assumption that
p(xi) are hidden variables:

L =

|D|∑
s=1

log(P(X(s))) (10)

=

|D|∑
s=1

log

 ∑
x∈S(X(s))

P(x)

 (11)

Here is the training algorithm as originally described in Kudo (2018):

1. Heuristically make a reasonably big seed vocabulary from the training
corpus.

2. Repeat the following steps until |V| reaches a desired vocabulary size.

(a) Fixing the set of vocabulary, optimize p(x) with the EM algorithm.
(b) Compute the lossi for each subword xi, where lossi represents how

the likelihood L is reduced when the subword xi is removed from the
current vocabulary.

(c) Sort the symbols by lossi and keep top η% of subwords (η is 80, for
example). Note that we always keep the subwords consisting of a single
character to avoid out-of-vocabulary.

How to prepare the seed vocabulary? Obvious choice: take the union of
the character types and the most frequent substrings in the corpus. This can
be done in O(T) time and O(20T) space using Nong et al., (2009)’s Enhanced
Suffix Array algorithm.5 5 Ge Nong, Sen Zhang, and Wai Hong

Chan. Linear suffix array construction by
almost pure induced-sorting. In 2009 data
compression conference, pages 193–202.
IEEE, 2009

The final vocabulary V that results from training includes three kinds of
segmentation candidates:

• characters

• subwords

• word

The choice between then, in segmenting a particular word, is probabilistic.

COMPUTATIONAL APPROACHES TO MORPHOLOGICAL SEGMENTATION AND TOKENIZ ATION 7

SentencePiece

SentencePiece is a tokenizer/detokenizer that does not assume that word
sequences can be pre-tokenized by whitespace.6 SentencePiece has two im- 6 Taku Kudo and John Richardson. Senten-

cePiece: A simple and language indepen-
dent subword tokenizer and detokenizer
for neural text processing. In Proceed-
ings of the 2018 Conference on Empirical
Methods in Natural Language Process-
ing: System Demonstrations, pages 66–71,
Brussels, Belgium, November 2018. As-
sociation for Computational Linguistics.
DOI: 10.18653/v1/D18-2012. URL
https://aclanthology.org/D18-2012

plementation: one of which is based on BPE and one of which is based on
Unigram tokenization. In SentencePiece output, the character “▁” is used to
indicate a space, to detokenizing is simply a matter of deleting all spacess,
then replacing “▁” with a space.

Unsupervised Morphological Segmentation

Morfessor

Morfessor is a much more complicated set of algorithms that are specifically
aimed at segmenting words into morphemes (and, unlike the unsupervised
tokenization approaches described above, replicating linguists’ segmentation
of words).

Descriptions of Morfessor and its variants use some specialized terminol-
ogy that can be confusing (since all of the terms have other meanings in other
contexts):

atoms The smallest pieces of text with which the algorithms are concerned.
For our purposes, these are CHARACTERS

compounds Sequences of atoms (the input of the learner algorithm). For our
purposes, these are words

constructions Lexical units which are intermediate between atoms and com-
pounds. What the algorithm is trying to discover. For our purposes, these
are morphs

(2) Notes
a. Compounds are sequences of constructions which are sequences

of atoms
b. Sequences can contain only a single item

i. Constructions may consist of a single atom
ii. Compounds may consist of a single construction

The following description of Morfessor is drawn from Virpioja et al.7. 7 Sami Virpioja, Peter Smit, Stig-Arne
Grönroos, and Mikko Kurimo. Morfessor
2.0: Python Implementation and Extensions
for Morfessor Baseline. Technical report,
Aalto University, School of Electrical
Engineering, 2013. URL http://urn.fi/
URN:ISBN:978-952-60-5501-5

The analysis of a compound (word) w into analysis a is expressed by the
tokenization function:

a = ϕ(w; θ) (12)

where θ denotes the parameters of the model (a lexicon and a grammar)
The cost function is derived using MAP (maximum a posteriori estima-

tion): find the mostly likely θ given and training data DW:

θMAP = argmax
θ

(θ|DW) = argmax
θ

p(θ)p(DW|θ) (13)

https://aclanthology.org/D18-2012
http://urn.fi/URN:ISBN:978-952-60-5501-5
http://urn.fi/URN:ISBN:978-952-60-5501-5

COMPUTATIONAL APPROACHES TO MORPHOLOGICAL SEGMENTATION AND TOKENIZ ATION 8

Figure 1: Overview of the Morfessor
workflow. Parameters θ are chosed tha
minimize the cost function with compounds
W in training data DW . θ is used to tokenize
text data compounds.

The cost function is:

L(θ,DW) = − log p(θ)− log p(DW|θ) (14)

To compute the log likelihood, the equation is as follows:

log p(DW|θ) =

N∑
j=1

log p(W = wj|θ) (15)

=

N∑
j=1

log
∑

a∈Φ(wj)

p(A = a|θ) (16)

where
ϕ(w) = a : ϕ−1(a) = w (17)

Y assigns each compound wj to a single analysis in Φ(wj). Given the analyses
for all words in the data, Y = (y1, . . . , yN).

log p(DW|θ, Y) =

N∑
j=1

log p(yi|θ) (18)

=

N∑
j=1

log p(mj1, . . . ,mj|yj|,#w|θ) (19)

=

N∑
j=1

(
log p(#w|θ) +

yi∑
i=1

log p(mji|θ)
)

(20)

In its most general form, the parameters θ are divided into a lexicon L and
a grammar G.

L includes the properties of “constructions”

G stipulates how “constructions” can be combined to form “compounds”

The prior in Morfessor assigns higher propabilities to lexicons with (1)
fewer constructions (2) shorter constructions (where, by “stored” we mean

COMPUTATIONAL APPROACHES TO MORPHOLOGICAL SEGMENTATION AND TOKENIZ ATION 9

that p(mi|θ) > 0). Thus, the probability of L can be expressed (for a lexicon
of μ constructions) as

p(L) = p(μ)× p
(
properties(m1), . . . , properties(mμ)

)
× μ! (21)

Each construction has two aspects: form and usage. Form is simply the
atoms of which the construction is composed. Forms are considered to be
independent. We can calculate the probability of the form σi of a construction
mi in terms of its length distribution p(L) and its categorical distribution
p(C):

p(σi) = p(L = |σi|)
|σi|∏
j=1

p(C = σij) (22)

Algorithm 1: Batch training Morfessor with
a global algorithmfunction GLOBALBATCHTRAIN(DW, ε)

θ, Y← InitModel(DW)

Lold ←∞
Lnew ← L(DW, θ, Y)
while Lnew < Lold − ε do

θ, Y← GLOBALSEARCH(Dw, θ, Y)
Lold ← Lnew
Lnew ← L(DW, θ, Y)

return θ, Y

References

Taku Kudo. Subword regularization: Improving neural network translation
models with multiple subword candidates. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 66–75, Melbourne, Australia, July 2018. Association
for Computational Linguistics. DOI: 10.18653/v1/P18-1007. URL
https://aclanthology.org/P18-1007.

Taku Kudo and John Richardson. SentencePiece: A simple and language
independent subword tokenizer and detokenizer for neural text processing.
In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages 66–71, Brussels, Bel-
gium, November 2018. Association for Computational Linguistics. DOI:
10.18653/v1/D18-2012. URL https://aclanthology.org/D18-2012.

Ge Nong, Sen Zhang, and Wai Hong Chan. Linear suffix array construction
by almost pure induced-sorting. In 2009 data compression conference, pages
193–202. IEEE, 2009.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine trans-
lation of rare words with subword units. In Proceedings of the 54th Annual

https://aclanthology.org/P18-1007
https://aclanthology.org/D18-2012

COMPUTATIONAL APPROACHES TO MORPHOLOGICAL SEGMENTATION AND TOKENIZ ATION 10

Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1715–1725, Berlin, Germany, August 2016. Association
for Computational Linguistics. DOI: 10.18653/v1/P16-1162. URL
https://aclanthology.org/P16-1162.

Sami Virpioja, Peter Smit, Stig-Arne Grönroos, and Mikko Kurimo. Morfessor
2.0: Python Implementation and Extensions for Morfessor Baseline. Tech-
nical report, Aalto University, School of Electrical Engineering, 2013. URL
http://urn.fi/URN:ISBN:978-952-60-5501-5.

Andrew Viterbi. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE transactions on Information Theory, 13
(2):260–269, 1967.

https://aclanthology.org/P16-1162
http://urn.fi/URN:ISBN:978-952-60-5501-5

	Introduction
	Tokenization Algorithms
	Unsupervised Morphological Segmentation
	Morfessor

