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Introduction

When we want to process language, we need to represent it as numbers and,
since we assume that it is linear, we usually want to represent it as a sequence
of numbers. But how should a passage of text be represented? In particular,
how should it be divided into units that can be processed computationally?

To many people, the most obvious unit into which text can be divided is
the word. In this scheme, the utterance

(1) Words aren’t simply atomic entities!

would have five basic units. As we will learn, defining WORD is not trivial.
Even in our example, there is a complication: aren’t can be seen as either a
single word or as the combination of two words, are + not. In this instance,
n’t is a special kind of word called a clitic which latches on to a neighboring
world. If we segment off n’t, then we get a sequence of six units:

(2) Words are n’t simply atomic entities!

This has the benifit of given all of the texts that have n’t similar representa-
tions, even when n’t is part of didn’t, isn’t, wasn’t, weren’t, as so on. It effectu-
ally reduces the sparcity of the text data, which is good, but it doesn’t scratch
the surface of the problem. The frequencies of words roughly follow a power
law distribution A few words are very frequent but most words are very infre- This is known as Zipf ’s Law, stated simply

f(r) ∼= 0.1
r where r is the rank order of a

word. In other words, the frequency of the
word with rank order r is approximately 0.1
over r.

quent. This means that we cannot learn a good representation of most words,
if we are building models using words as tokens. It would be nice, both from
a computational and a theoretical perspective, if we could analyze text into
units that did not display this kind of distribution.

The obvious answer is to tokenize by letter or character.

(3) W o r d s _ a r e n ' t _ s i m p l y _ a t o m i c _ e
n t i t i e s !

While this may not be as obvious a choice for languages written with LO-
GOGRAPHIC writing systems like Chinese (where the number of possible
characters is very large and where the distribution of characters is roughly
Zipfian), it addresses some aspects of tokenization for languages written
with ALPHABETIC systems well. English, for example, has only 26 letters
plus a handful of punctuation and whitespace characters. Every word (with
exception like emoji) will be made up of strings of these characters.

One might even tokenize by phonemes (individual units of sound) in
which the sequence would look like:

(4) w r̩ d z ɑ ɹ n̩ t s ɪ m p l i ʌ t ɑ m ɪ k ɛ n t ɪ t i z
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Duality of Patterning

But the character-level and phoneme-level tokenizations run up against a
problem. As Charles Hockett noted in his classic textbook, A course in modern
linguitics, language and other sign systems display “duality of patterning”1. 1 Charles F. Hockett. A course in modern

linguistics. Macmillan, New York, 1958The observation is that the smallest units in language that can contribute
to making distinctions in meaning are (by themselves) meaningless. For al-
phabetic writing, these are letters; for speech, these are phonemes. A similar
observation was made by Martinet2. The upshot, from a computational per- 2 André Martinet. Eléments de linguistique

générale. Colin, Paris, 1960spective, is that embeddings of ⟨t⟩3 are never going to be as meaningful as
3 Letters enclosed in angle brackets are
GRAPHEMES—units of written language.embeddings of tokens like ⟨n’t⟩. ⟨n’t⟩ only occurs in sentences that include

‘NEGATIVE’ as one their components but ⟨t⟩ can occur in almost any sen-
tence.

Duality of patterning states that there is a basic level of units that are dis-
tinctive but meaningless and that there is a more complex level of units that
are both meaningful and possess internal structure (they’re made out of the
units from the basic level). If we could tokenize text into units on the second Meaningful units and how they combine will

be discussed more in Lecture 2.level, each token would be meaningful and could be assigned a meaningful
embedding. In principle, in fact, we should be able to tokenize a sentence so
that each token in a sentence is maximally informative regarding what the
sentence means.

Tokenization Schemes

In NLP, various means have been developed to tokenize text below the level
of the word, all of which will be discussed in greater detail subsequently. Tokenization algorithms will be discussed in

detail in Lecture 6.The simplest of these is byte pair encoding, a version of Huffman Coding
introduced to NLP by Rico Sennrich4. Like the subsequent tokenization 4 Rico Sennrich, Barry Haddow, and Alexan-

dra Birch. Neural machine translation
of rare words with subword units. In
Proceedings of the 54th Annual Meeting
of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages
1715–1725, Berlin, Germany, August 2016.
Association for Computational Linguis-
tics. DOI: 10.18653/v1/P16-1162. URL
https://aclanthology.org/P16-1162

algorithms mentioned here, it is sensitive to the hyperparameter VOCABU-
LARY SIZE. Our sentence, when tokenized with the BPE model employed
with a particular version of the RoBERTa model is as follows:

(5) Words Ġar en 't Ġsimp'ly Ġato mi c Ġen titi es !

Where Ġ indicates the beginning of a non-inital “word.” Wordpiece is a closely
related tokenization scheme.5 The Wordpiece model used in BERT yields 5 Yonghui Wu, Mike Schuster, Zhifeng Chen,

Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin
Gao, Klaus Macherey, et al. Google’s neural
machine translation system: Bridging
the gap between human and machine
translation. arXiv preprint arXiv:1609.08144,
2016

results like:

(6) words aren ' t simply atomic entities !

The fact that there are fewer tokens results, in part, from the fact that the
vocabulary size is larger relative to the set of characters.

Sentencepiece is a rather different tokenization scheme that does not as-
sume that words are separated by whitespace.6 The same sentence tokenized 6 Taku Kudo and John Richardson. Senten-

cePiece: A simple and language indepen-
dent subword tokenizer and detokenizer
for neural text processing. In Proceed-
ings of the 2018 Conference on Empirical
Methods in Natural Language Process-
ing: System Demonstrations, pages 66–71,
Brussels, Belgium, November 2018. As-
sociation for Computational Linguistics.
DOI: 10.18653/v1/D18-2012. URL
https://aclanthology.org/D18-2012

by the sentencepiece tokenizer used with certain versions of RoBERTa looks
like this:

https://aclanthology.org/P16-1162
https://aclanthology.org/D18-2012
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(7) ▁ Words ▁ aren't ▁ simply ▁ atomic ▁ entities!

That is, except for the treatment of whitespace, it looks just like Example (1).
Sentencepiece is based in part on a Unigram model of tokenization. When
applied to our sentence, Unigram yields results like:

(8) ▁Word s ▁are n ' t ▁simply ▁atomic ▁ entitie s !
The dramatic difference seen here between
Sentencepiece and Unigram is due, largely,
to differences in the vocabulary size of
the models rather than the algorithms
themselves. Nevertheless, it provides a
convenient opportunity for comparison.

Morphemes

In the Unigram output, you probably noticed something you didn’t notice in
output of the earlier tokenizers: the ⟨s⟩ at the ends of ⟨Words⟩ and ⟨entities⟩
is segmented off as a separate token. Also, ⟨are⟩ is treated as a token indepen-
dent of ⟨n⟩, ⟨’⟩, and ⟨t⟩ (which follow it). This is because Unigram captures an
insight from linguistics that is not captured by the BPE, wordpiece, or senten-
cepiece tokenizers: ⟨Word⟩, ⟨are⟩, and ⟨entitie⟩ are all MORPHEMES (the
units on Hockett’s second tier). The plural ⟨s⟩ suffixes are also morphemes.

When tokenized into morphemes, our sentence would be as in (9):

(9) ▁Word s ▁are n't ▁simp ly ▁atom ic ▁entitie s

Some observations:

(10) A morpheme is a minimal meaning ful unit.
a. By definition, a morpheme is something that can have a meaning-

ful embedding
b. All words are composed of morphemes
c. Rare words are usually composed of more frequent morphemes

(11) Hypothesis:
a. An optimal tokenization is one in which each token consists of

exactly 1 morpheme.
b. The next most optimal tokenizations are those in which each

token consists of exactly n morphemes.

Allomorphy

Note something interesting about simply and entities in (9) above:

(12) a. The root simple is spelled here as ⟨simp⟩ (followed by the suffix
⟨ly⟩)

b. The root entity is spelled here as ⟨entitie⟩ (followed by the suffix
⟨s⟩)

These are examples of the phenomenon called ALLOMORPHY7. 7 Allomorphy is when the same morpheme
has different spellings or pronunciations
based on context. It will be discussed more
in Lecture 7.

Hypothesis:
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(13) In an optimal tokenization, tokens are normalized such that all in-
stances of a particular morpheme have the same representation (and
the same embedding)

Looking Forward

In this lecture, we have already briefly introduced several of the themes of this
Module:

• Meaningful units (signs) below the level of the word (morphemes)

• Morphological segmentation

• Computational approaches to segmentation and their relationship to
tokenization

• Allomorphy

We will also talk about a number of related topics:

• Inflection, derivation, and compounding (morphological functions)

• Morphological operations on form besides affixation AFFIXATION is a general term for prefixa-
tion and suffixation.

The First Project

The goal of the first project is to develop a tokenizer—a morphological
segmenter—that segments text from an arbitrary language more similarly to
gold morpheme segmentations by a linguist than two baselines: a rule-based
(FST) baseline and a Unigram tokenization model.

The data

You will be provided with data from two languages:

• Rarámuri (Tahumara) [tar], an indigenous language of Northern Mexico
that is part of the Uto-Aztecan language family.

• Shipibo-Konibo [shp], a Panoan language of the Peruvian Amazon.

For each language, for each set (train, dev, and test), you will be provided with
a source file. You will be provided the target file for the train set and dev set8 8 The train and test target file will be held

out.The source file will consist of unsegmented words, one per line. The target
fill will consist of the same words in the same order, but with the morphemes
delimited by spaces, as shown in (14).

(14) The first entries from the Shipibo-Conibo source and target data
a. src: ointiyamaai
b. tgt: ointi yama ai
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The task

The goal is the reproduce the reference target given the source and a model
trained on the (source side of the) training set. This can be seen an a se-
quence labeling task in which your model must decide whether a character is
the beginning of a new span (morpheme) or the continuation of an existing
span. There are other ways of viewing the task, but evaluation (in terms of
precision/recall/F1) will be based on this paradigm. Labeling a character as
“beginning” will be treated as a positive and not labeling it as such will be
treated as a negative.

Baselines

As will often be the case in this course, there will be two baselines: one data-
driven and one rule-based.

FST (rule-based). For each language, there will be a hand-crafted finite-
state transducer based segmentation model. This model will be based on
linguist analysis of the data and secondary literature on the morphology
(word structure) of the language. You will be provided with access to the FST
outputs for the dev set.

Unigram (data-driven). For each language, a Unigram model will be
trained on the training set. If other unlabeled text data can be found, it will be
used as well (and shared with you). You will be provided with the Unigram
tokenizer output for the dev set.

Suggestions

• Developed improved information-theoretic tokenization algorithm in the
same family as BPE or Unigram tokenization

• Develop better means of selecting an optimal vocabulary for BPE-like
algorithms9

9 Jingjing Xu, Hao Zhou, Chun Gan,
Zaixiang Zheng, and Lei Li. Vocabulary
learning via optimal transport for neural
machine translation. In Proceedings of
the 59th Annual Meeting of the Association
for Computational Linguistics and the
11th International Joint Conference on
Natural Language Processing (Volume 1:
Long Papers), pages 7361–7373, Online,
August 2021. Association for Computational
Linguistics. DOI: 10.18653/v1/2021.acl-
long.571. URL https://aclanthology.
org/2021.acl-long.571

• Improve on unsupervised morphological segmentation algorithms like
Morfessor and Morfessor FlatCat10.

10 Stig-Arne Grönroos, Sami Virpioja, Pe-
ter Smit, and Mikko Kurimo. Morfessor
FlatCat: An HMM-based method for un-
supervised and semi-supervised learning
of morphology. In Proceedings of COLING
2014, the 25th International Conference on
Computational Linguistics: Technical Papers,
pages 1177–1185, Dublin, Ireland, August
2014. Dublin City University and Associa-
tion for Computational Linguistics. URL
https://aclanthology.org/C14-1111;
and Stig-Arne Grönroos, Sami Virpioja, and
Mikko Kurimo. Morfessor EM+Prune:
Improved subword segmentation with ex-
pectation maximization and pruning. In
Proceedings of the Twelfth Language Re-
sources and Evaluation Conference, pages
3944–3953, Marseille, France, May 2020.
European Language Resources Association.
ISBN 979-10-95546-34-4. URL https:
//aclanthology.org/2020.lrec-1.486

• Build a better rule-based (probably FST-based) morphological segmenter,
perhaps using LEXC and Foma11.

11 Mans Hulden. Foma: a finite-state
compiler and library. In Proceedings of
the Demonstrations Session at EACL 2009,
pages 29–32, Athens, Greece, April 2009.
Association for Computational Linguistics.
URL https://aclanthology.org/
E09-2008

Extensions

• Does your segmentation/tokenization method provide better performance
on some downstream tasks than widely used tokenization schemes like
BPE, Unigram, and sentencepiece?

• More generally, is there a correlation between how well a tokenization
scheme performs on the morphological segmentation task and how well it
performs on downstream NLP tasks?

https://aclanthology.org/2021.acl-long.571
https://aclanthology.org/2021.acl-long.571
https://aclanthology.org/C14-1111
https://aclanthology.org/2020.lrec-1.486
https://aclanthology.org/2020.lrec-1.486
https://aclanthology.org/E09-2008
https://aclanthology.org/E09-2008
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• How does the runtime efficiency of your method compare with the other
methods?
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